

USP Roundtable for DS Protein Standards

Hosted on February 07, 2017 USP-U.S., Rockville, MD

Discussion Agenda

- Identification Tests for Proteins from Various Sources
- Quantitative Determination of Proteins
- Determination of the Purity of Proteins
- Limits for Contaminants in Proteins
- Labelling, Packaging, Storage, and Handling

Identification Tests for Proteins from Various Sources

Current identification tests for proteins used in industry

- Comprehensive supplier chain qualification program helps reduce routine ID tests at the manufacturing site. Some manufacturers audit suppliers on a quarterly or annual basis.
- Typical identification tests: <u>appearance</u>, <u>organoleptic</u>, <u>Kjeldahl</u>, <u>Near Infrared (NIR)</u> for process monitoring and QC release.
- Amino acid profiling is used on a demand basis by customers.

Suggested identification tests for proteins from various sources

- Manufacturers were aware of advanced tests: electrophoresis, CE, peptide mapping, mass spectrometry, ELISA for plant based proteins.
- Suggested that <u>amino acid profiling in combination with protein profiling</u> with electrophoresis (SDS PAGE) is feasible and suitable.

Quantitative Determination of Proteins from Various Sources

Current quantification tests for different sources

- The standard method for protein quantification in industry is Kjeldahl or combustion (Dumas).
- NIR is commonly used for protein quantification. Total amino acid (AA) contents is believed to provide accurate protein contents.

Suggested quantification tests for protein ingredients and finished products containing proteins from various sources

- Suggested that Kjeldahl or Dumas is a widely accepted quantification method.
- Total Amino Acids (AA) can be used as a complementary method to Kjeldahl or Dumas. Total AA methods require further standardization and validation.

Determination of the Purity of Proteins from Various Sources

Impurities/specific tests for proteins

- Dairy protein industry routinely test for loss on drying (LOD), ash, fat and lactose.
- Some manufacturers test for non-protein nitrogen contents through precipitation or molecular weight filtration.
- The soy industry tests for fat and minerals.
- Rice proteins are tested for heavy metals (lead, and arsenic). Heavy metals in rice is a global concern.

Suggested purity tests for protein ingredients from various sources

Non-protein nitrogen contents, LOD, fat, ashes, lactose for dairy proteins

Limits for Contaminants in Proteins from Various Sources

Suggested tests for <u>chemical</u> contaminants in protein ingredients from various sources

- Mycotoxins (e.g. Aflatoxins), heavy metals, and pesticides for vegetable proteins
- Nitrogen containing compounds (e.g. Nitrile, Nitrate, Melamine, Cyanuric acid, Urea, Amidinourea, Ammelide, Ammeline, Biuret, Cyromazin, Dicyandiamide)

Suggested tests for <u>microbiological</u> contaminants in protein ingredients from various sources

- Stakeholders select tests for microbiological contaminants based on HACCP and their own risk assessments depending on sources.
- Suggested total plate counts (TPC), yeast-molds, *E. coli* and *Salmonella*. In addition, *Listeria for* dairy protein manufacturers.

Learnings from the Roundtable

Identification

- Should be specific to various sources and processes
- Orthogonal approach (candidates)
 - Protein profiling (SDS PAGE)
 - Amino acid profiling

Assay

- Should address the true content of proteins.
- Orthogonal approach (candidates)
 - Non-specific nitrogen determination (Kjeldahl or Dumas)
 - Total amino acid contents

Limits for Contaminants

- Should consider risk mitigation approaches & specific acceptance criteria.
 - Heavy metals
 - Potential adulterants (Nitrogen containing compounds)

Thank You