

HPTLC for describing and controlling the quality of poly-herbal formulations

Eike Reich, Débora Frommenwiler

HPTLC in a nut shell

According to USP chapter <203>:

- 20x10 cm HPTLC glass plate Si 60 F₂₅₄
- Application: 15 tracks, 8 mm bands, 8 mm from lower edge, first track at 20 mm
- Conditioning to 33% relative humidity
- Development: 70 mm from lower edge, 20 min saturation (filter paper), 5 mm solvent level

Now let's take **one step beyond** chapter <203>

Comprehensive HPTLC fingerprinting

As discussed by USP Joint Subcommittee on Modern Analytical Methods

Images also carry quantitative information:

Pixels

Peak	RF	Height (AU)	Area (AU)
1	0.190	0.19973	0.007004
2	0.238	0.214429	0.009101
3	0.273	0.250716	0.005022
4	0.293	0.160755	0.003115
5	0.335	0.346191	0.012301
6	0.378	0.226948	0.006157
7	0.443	0.534302	0.022513
8	0.492	0.20429	0.0069
9	0.595	0.086192	0.006577
10	0.781	0.129996	0.006369
11	0.928	0.175959	0.007206

Comprehensive HPTLC fingerprinting

 HPTLC fingerprints, which are used for identification, contain information beyond identity...

Analytical challenges of poly-herbal formulations

Poly-herbal formulations: the state of the art

- ChP and KP → monographs for TCM and Kampo poly-herbal formulations
- Most monographs include in their identification section a TLC ID method for each ingredient
- Identification is carried out by comparing the fingerprints of the product with those of the individual herbal reference drugs or analytical standards.
- Usually the assay is based on quantification of one analytical marker for each ingredient

Poly-herbal TCM formulation: Duliang Ruanjionang

The ChP monograph for this medicine includes a single TLC method for identification of all ingredients.

Polyherbal TCM formulation → Duliang Ruanjionang

The HPTLC Association has an harmonized method for identifying and distinguishing both herbal

HPTLC method:

- DS: Toluene, ethyl acetate and acetic acid (90:10:1 v/v/v)
- Derivatization: Sulfuric acid reagent in methanol

USP Open Forum: Multi-Ingredient Dietary Supplement Products

Polyherbal Kampo medicine formulation: Orengedokuto

Most of the Kampo medicines of JP contain aqueous extracts (decocts). Preparation is described in a general section.

Preparation of Orengedokuto decoctions:

	1)	2)	3)	4)
Coptis Rhizome	1.5 g	1.5 g	2 g	2 g
Phellodendron Bark	1.5 g	3 g	2 g	1.5 g
Scutellaria Root	3 g	3 g	3 g	3 g
Gardenia Fruit	2 g	3 g	2 g	2 g

Definition:

- NLT 20 mg and NMT 80 mg of berberine (Coptis and Phellodendron)
- NLT 80 mg and NMT 240 mg of baicalin (Scutellariae Radix)
- NLT 30 mg and NMT 90 mg geniposide (Gardenia Fruit)

Polyherbal Kampo medicine formulation: Orengedokuto ...

- Preparation of decoction
 - 1.5 3.0 g of material
 - 1 hour extraction (reflux) + ~ 30 min drying the aqueous extract
- Identification test (TLC):
 - 4 different TLC methods (~ 3 4 hours for each method)
 - 3 different sample preparations (some of them very cumbersome and the extract is not entirely dissolved)
 - 4 different analytical standards: coptisine chloride, limonin, wogonin, and geniposide

TLC method 1 (Coptis rhizome):

- **Sample prep**: Shake 0.5 g of dry extract with 10 mL of methanol, centrifuge, and use the supernatant.
- **DS**: ethyl acetate, ammonia solution and methanol (15:1:1 v/v/v)
- Evaluation in 365 nm before derivatization

TLC method 2 (Phellodendron bark):

- **Sample prep**: Shake 0.5 g of dry extract with 5 mL of H₂O, then add 25 mL of EtOAC. Dry the EtOAC fraction and dissolve the residue in 1 mL of methanol.
- **DS:** ethyl acetate and hexane (5:1 v/v)
- Derivatization: vanillin-sulfuric acid reagent
- Detection mode not specified

TLC method 3 (Scutellaria root):

- **Sample prep**: Shake 1.0 g of dry extract with 10 mL of H₂O, then add 10 mL of diethyl ether, shake, centrifuge, and use the supernatant
- DS: ethyl acetate, hexane and acetic acid (10:10:1 v/v/v)
- Derivatization: iron (III) chloride-methanol reagent
- Detection mode not specified

TLC method 4 (Gardenia Fruit):

- **Sample prep**: Shake 0.5 g of dry extract with 10 mL of methanol, centrifuge, and use the supernatant.
- DS: ethyl acetate, methanol and water (20:3:2 v/v/v)
- Derivatization: 4-methoxybezaldehyde-sulfuric acid reagent
- Detection mode not specified

Ayurvedic preparation containing 4 ingredients

- Maharish Ayurveda have their own formulation with Ayurvedic herbs called MA 3
- It is used for brain health and memory
- It contains:

- Goal of the HPTLC method: to define "positive markers" for each herbal drug
- Method evaluation:
- Evaluate the individual herbal drugs and the mixture thereof with the methods for each herbal drug. Source of the methods: QSIMP; USP DSC and BP.
- Sample preparation: use a universal method → 20 mg/mL in methanol, sonication for 10⁶

Method evaluation → Glycyrrhiza spp Root and Rhizome; USP DSC

Method evaluation → Tinospora cordifolia stem, proposed to the BP

Method evaluation → Convolvulus microphyllus, QSIMP, Vol 2, p 70

- Developing solvent: Ethyl acetate, toluene,
 acetic acid (5:4:1 v/v/v)
- Derivatization: Sulfuric acid in methanol

Method not suitable for Tinospora cordifolia

Method evaluation → Centella asiatica aerial parts USP 41 - NF36

- Developing solvent: Dichloromethane, methanol, water (14:6:1 v/v/v)
- PPSD detection is suitable for Centella asiatica.

Derivatization: Sulfuric acid in methanol

HPTLC for describing and controlling the quality of poly-herbal formulations

Summary

- HPTLC <203> and comprehensive HPTLC fingerprinting are the ticket for pragmatic description and control of quality of poly-herbal formulations, allowing proper identification and determination of identity and strength of ingredients (raw material) and finished products.
- Method development and validation are straight forward and not time consuming.
- Electronic standards can be developed for ingredients and finished products.
- Qualitative and quantitative assessments are based on the same analysis.
- No special equipment required.

THANK YOU!

eike.reich@hptlc-association.org